p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.44C22, C23.380C24, C24.297C23, C22.1832+ (1+4), (C2×C42)⋊5C22, C24⋊3C4.8C2, C22⋊C4.135D4, C23.181(C2×D4), C2.59(D4⋊5D4), (C22×C4).66C23, (C23×C4).94C22, C23.7Q8⋊51C2, C23.8Q8⋊59C2, C23.Q8⋊21C2, C22⋊2(C42⋊2C2), C23.144(C4○D4), C23.11D4⋊22C2, C22.260(C22×D4), C2.C42⋊55C22, C24.C22⋊59C2, C2.52(C22.19C24), C2.18(C22.32C24), C2.24(C22.45C24), (C2×C4⋊C4)⋊19C22, (C4×C22⋊C4)⋊13C2, (C2×C4).904(C2×D4), (C2×C42⋊2C2)⋊5C2, C2.10(C2×C42⋊2C2), C22.257(C2×C4○D4), (C22×C22⋊C4).23C2, (C2×C22⋊C4).148C22, SmallGroup(128,1212)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 724 in 332 conjugacy classes, 104 normal (82 characteristic)
C1, C2 [×7], C2 [×8], C4 [×14], C22 [×7], C22 [×4], C22 [×48], C2×C4 [×4], C2×C4 [×42], C23, C23 [×10], C23 [×48], C42 [×3], C22⋊C4 [×4], C22⋊C4 [×26], C4⋊C4 [×9], C22×C4 [×12], C22×C4 [×10], C24 [×3], C24 [×12], C2.C42 [×8], C2×C42 [×2], C2×C22⋊C4 [×16], C2×C22⋊C4 [×4], C2×C4⋊C4 [×6], C42⋊2C2 [×4], C23×C4 [×2], C25, C4×C22⋊C4, C24⋊3C4 [×2], C23.7Q8, C23.8Q8 [×2], C24.C22 [×3], C23.Q8, C23.11D4 [×3], C22×C22⋊C4, C2×C42⋊2C2, C23.380C24
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×8], C24, C42⋊2C2 [×4], C22×D4, C2×C4○D4 [×4], 2+ (1+4) [×2], C22.19C24, C2×C42⋊2C2, C22.32C24, D4⋊5D4 [×2], C22.45C24 [×2], C23.380C24
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=g2=ba=ab, f2=a, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
(1 20)(2 17)(3 18)(4 19)(5 13)(6 14)(7 15)(8 16)(9 32)(10 29)(11 30)(12 31)(21 28)(22 25)(23 26)(24 27)
(1 18)(2 19)(3 20)(4 17)(5 15)(6 16)(7 13)(8 14)(9 30)(10 31)(11 32)(12 29)(21 26)(22 27)(23 28)(24 25)
(1 22)(2 23)(3 24)(4 21)(5 29)(6 30)(7 31)(8 32)(9 16)(10 13)(11 14)(12 15)(17 26)(18 27)(19 28)(20 25)
(1 22)(2 26)(3 24)(4 28)(5 31)(6 9)(7 29)(8 11)(10 15)(12 13)(14 32)(16 30)(17 23)(18 27)(19 21)(20 25)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6 20 14)(2 31 17 12)(3 8 18 16)(4 29 19 10)(5 28 13 21)(7 26 15 23)(9 24 32 27)(11 22 30 25)
(1 2 3 4)(5 30 7 32)(6 31 8 29)(9 13 11 15)(10 14 12 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)
G:=sub<Sym(32)| (1,20)(2,17)(3,18)(4,19)(5,13)(6,14)(7,15)(8,16)(9,32)(10,29)(11,30)(12,31)(21,28)(22,25)(23,26)(24,27), (1,18)(2,19)(3,20)(4,17)(5,15)(6,16)(7,13)(8,14)(9,30)(10,31)(11,32)(12,29)(21,26)(22,27)(23,28)(24,25), (1,22)(2,23)(3,24)(4,21)(5,29)(6,30)(7,31)(8,32)(9,16)(10,13)(11,14)(12,15)(17,26)(18,27)(19,28)(20,25), (1,22)(2,26)(3,24)(4,28)(5,31)(6,9)(7,29)(8,11)(10,15)(12,13)(14,32)(16,30)(17,23)(18,27)(19,21)(20,25), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,20,14)(2,31,17,12)(3,8,18,16)(4,29,19,10)(5,28,13,21)(7,26,15,23)(9,24,32,27)(11,22,30,25), (1,2,3,4)(5,30,7,32)(6,31,8,29)(9,13,11,15)(10,14,12,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)>;
G:=Group( (1,20)(2,17)(3,18)(4,19)(5,13)(6,14)(7,15)(8,16)(9,32)(10,29)(11,30)(12,31)(21,28)(22,25)(23,26)(24,27), (1,18)(2,19)(3,20)(4,17)(5,15)(6,16)(7,13)(8,14)(9,30)(10,31)(11,32)(12,29)(21,26)(22,27)(23,28)(24,25), (1,22)(2,23)(3,24)(4,21)(5,29)(6,30)(7,31)(8,32)(9,16)(10,13)(11,14)(12,15)(17,26)(18,27)(19,28)(20,25), (1,22)(2,26)(3,24)(4,28)(5,31)(6,9)(7,29)(8,11)(10,15)(12,13)(14,32)(16,30)(17,23)(18,27)(19,21)(20,25), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,20,14)(2,31,17,12)(3,8,18,16)(4,29,19,10)(5,28,13,21)(7,26,15,23)(9,24,32,27)(11,22,30,25), (1,2,3,4)(5,30,7,32)(6,31,8,29)(9,13,11,15)(10,14,12,16)(17,18,19,20)(21,22,23,24)(25,26,27,28) );
G=PermutationGroup([(1,20),(2,17),(3,18),(4,19),(5,13),(6,14),(7,15),(8,16),(9,32),(10,29),(11,30),(12,31),(21,28),(22,25),(23,26),(24,27)], [(1,18),(2,19),(3,20),(4,17),(5,15),(6,16),(7,13),(8,14),(9,30),(10,31),(11,32),(12,29),(21,26),(22,27),(23,28),(24,25)], [(1,22),(2,23),(3,24),(4,21),(5,29),(6,30),(7,31),(8,32),(9,16),(10,13),(11,14),(12,15),(17,26),(18,27),(19,28),(20,25)], [(1,22),(2,26),(3,24),(4,28),(5,31),(6,9),(7,29),(8,11),(10,15),(12,13),(14,32),(16,30),(17,23),(18,27),(19,21),(20,25)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6,20,14),(2,31,17,12),(3,8,18,16),(4,29,19,10),(5,28,13,21),(7,26,15,23),(9,24,32,27),(11,22,30,25)], [(1,2,3,4),(5,30,7,32),(6,31,8,29),(9,13,11,15),(10,14,12,16),(17,18,19,20),(21,22,23,24),(25,26,27,28)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 3 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 2 | 0 |
4 | 3 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,4,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4R | 4S | 4T | 4U | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ (1+4) |
kernel | C23.380C24 | C4×C22⋊C4 | C24⋊3C4 | C23.7Q8 | C23.8Q8 | C24.C22 | C23.Q8 | C23.11D4 | C22×C22⋊C4 | C2×C42⋊2C2 | C22⋊C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 3 | 1 | 1 | 4 | 16 | 2 |
In GAP, Magma, Sage, TeX
C_2^3._{380}C_2^4
% in TeX
G:=Group("C2^3.380C2^4");
// GroupNames label
G:=SmallGroup(128,1212);
// by ID
G=gap.SmallGroup(128,1212);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,344,758,723,100,675,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=g^2=b*a=a*b,f^2=a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations